Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(2): e13891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990596

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant pathogen that causes high morbidity and mortality in largemouth bass, leading to enormous economic losses for largemouth bass aquaculture in China. The aim of this study was to investigate the efficacy of four disinfectants (potassium permanganate, glutaraldehyde, trichloroisocyanuric acid and povidone iodine) on MSRV, to control the infection and transmission of MSRV in largemouth bass aquaculture. The disinfectants were tested at different concentrations (5, 25, 50, 100 and 500 mg/L) prepared with distilled water for 30 min contact time, and the viral nucleic acid was quantified using qPCR and the infectivity was tested by challenge experiment. Potassium permanganate at 5-500 mg/L, glutaraldehyde at 500 mg/L, trichloroisocyanuric acid at 50-500 mg/L and povidone iodine at 500 mg/L concentration could effectively decrease the virus nucleic acid, and the survival rate of largemouth bass juveniles after challenge experiment increased significantly from 3.7% ± 6.41% to 33.33 ± 11.11% - 100%. Moreover, the minimum effective time of 5 mg/L potassium permanganate was further studied at 2, 5, 10 and 20 min contact time. The viral nucleic acid decreased significantly at 5-20 min exposure time, and the survival rate increased significantly from 7.41% ± 6.41% to 77.78 ± 11.11% - 100%. The median lethal concentration (LC50 ) values of potassium permanganate were 10.64, 6.92 and 3.7 mg/L at 24, 48 and 96 h, respectively. Potassium permanganate could be used for the control of MSRV in the cultivation process; the recommended concentration is 5 mg/L and application time should be less than 24 h. The results could be applied to provide a method to control the infection and transmission of MSRV in water, and improve the health status of largemouth bass.


Assuntos
Bass , Desinfetantes , Doenças dos Peixes , Ácidos Nucleicos , Rhabdoviridae , Animais , Desinfetantes/farmacologia , Glutaral , Permanganato de Potássio , Povidona-Iodo , Doenças dos Peixes/prevenção & controle , Água
2.
Front Immunol ; 14: 1266997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022669

RESUMO

Chito-oligosaccharides (COS) and ß-glucan are gradually being applied in aquaculture as antioxidants and immunomodulators. However, this study examined the effects of dietary supplementation of COS and ß-glucan on the water quality, gut microbiota, intestinal morphology, non-specific immunity, and meat quality of Chinese soft-shell turtle. To investigate the possible mechanisms, 3-year-old turtles were fed basal diet (CK group) and 0.1%, 0.5%, and 1% COS or ß-glucan supplemented diet for 4 weeks. Colon, liver, blood and muscle tissues, colon contents, water and sediment of paddy field samples were collected and analyzed after feeding 2 and 4 weeks. The results indicated that COS and ß-glucan altered microbial community composition and diversity in Chinese soft-shell turtles. The relative abundance of Cellulosilyticum, Helicobacter and Solibacillus were increased after feeding COS, while Romboutsia, Akkermansia and Paraclostridium were increased after feeding ß-glucan, whereas Cetobacterium, Vibrio and Edwardsiella were enriched in the control group. Furthermore, colon morphology analysis revealed that COS and ß-glucan improved the length and number of intestinal villi, and the effect of 0.5% ß-glucan was more obvious. Both ß-glucan and COS significantly improved liver and serum lysozyme activity and antibacterial capacity. COS significantly increased the total antioxidant capacity in the liver. Further, 0.1% ß-glucan significantly increased the activity of hepatic alkaline phosphatase, which closely related to the bacteria involved in lipid metabolism. Moreover, dietary supplementation with 1% COS and 1% ß-glucan significantly enhanced the content of total amino acids, especially umami amino acids, in muscle tissue, with ß-glucan exerting a stronger effect than COS. Additionally, these two prebiotics promoted the quality of culture water in paddy fields and reshaped the bacterial community composition of aquaculture environment. All these phenotypic changes were closely associated with the gut microbes regulated by these two prebiotics. In summary, the findings suggest that dietary supplementation with COS and ß-glucan in Pelodiscus sinensis could modulate the gut microbiota, improve intestinal morphology, enhance non-specific immunity and antioxidant capacity of liver and serum, increase meat quality, and improve the culture water environment. This study provides new insights and a comprehensive understanding of the positive effects of COS and ß-glucan on Pelodiscus sinensis.


Assuntos
Microbioma Gastrointestinal , Oligossacarídeos , Tartarugas , beta-Glucanas , Animais , Aminoácidos/metabolismo , Antioxidantes/farmacologia , beta-Glucanas/farmacologia , Dieta/veterinária , Imunidade , Oligossacarídeos/farmacologia , Qualidade da Água
3.
Genes (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003039

RESUMO

High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the 'ECM-receptor interaction' pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the 'ECM-receptor interaction' pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS.


Assuntos
Bass , Transcriptoma , Animais , Transcriptoma/genética , Bass/genética , Bass/metabolismo , Temperatura , Perfilação da Expressão Gênica , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...